MAX6654
1°C Accurate Remote/Local Temperature
Sensor with SMBus Serial Interface
minor improvement in leakage and noise), but try to
use them where practical.
8) Keep in mind that copper can’t be used as an EMI
shield, and only ferrous materials such as steel
work well. Placing a copper ground plane between
the DXP-DXN traces and traces carrying high-fre-
quency noise signals does not help reduce EMI.
Hardware and software standby modes behave almost
identically; all data is retained in memory, and the SMB
interface is alive and listening for reads and writes. The
only difference is that in hardware standby mode, the
one-shot command does not initiate a conversion.
Standby mode is not a shutdown mode. With activity on
the SMBus, extra supply current is drawn (see Typical
?
?
?
?
?
?
?
?
PCB Layout Checklist
Place the MAX6654 close to the remote-sense
junction.
Keep traces away from high voltages (+12V bus).
Keep traces away from fast data buses and CRTs.
Use recommended trace widths and spacings.
Place a ground plane under the traces.
Use guard traces flanking DXP and DXN and con-
necting to GND.
Place the noise filter and the 0.1μF V CC bypass
capacitors close to the MAX6654.
Add a 200 Ω resistor in series with V CC for best
Operating Characteristics). In software standby mode,
the MAX6654 can be forced to perform A/D conver-
sions through the one-shot command, despite the
RUN/STOP bit being high.
Activate hardware standby mode by forcing the STBY
pin low. In a notebook computer, this line may be con-
nected to the system SUSTAT# suspend-state signal.
The STBY pin low state overrides any software conver-
sion command. If a hardware or software standby com-
mand is received while a conversion is in progress, the
conversion cycle is truncated, and the data from that
conversion is not latched into either temperature read-
ing register. The previous data is not changed and
remains available.
noise filtering (see Typical Operating Circuit).
Twisted-Pair and Shielded Cables
For remote-sensor distances longer than 8in, or in partic-
ularly noisy environments, a twisted pair is recommend-
ed. Its practical length is 6ft to 12ft (typ) before noise
becomes a problem, as tested in a noisy electronics lab-
oratory. For longer distances, the best solution is a
shielded twisted pair like that used for audio micro-
phones. For example, Belden #8451 works well for dis-
tances up to 100ft in a noisy environment. Connect the
twisted pair to DXP and DXN and the shield to GND, and
leave the shield’s remote end unterminated.
Excess capacitance at DXN and DXP limits practical
remote-sensor distances (see Typical Operating
Characteristics). For very long cable runs, the cable’s
parasitic capacitance often provides noise filtering, so
the 2200pF capacitor can often be removed or reduced
in value.
Cable resistance also affects remote-sensor accuracy;
1 Ω series resistance introduces about +1/2°C error.
Setting bit 4 of the configuration register to 1 invokes
the parasitic resistance cancellation mode. This rejects
external resistance in excess of 100 Ω while maintaining
conversion accuracy.
Low-Power Standby Mode
Standby mode disables the ADC and reduces the sup-
ply-current drain to less than 10μA. Enter standby
mode by forcing the STBY/pin low or through the
RUN/STOP bit in the configuration byte register.
Maxim Integrated
Supply-current drain during the 125ms conversion peri-
od is always about 550μA. Slowing down the conver-
sion rate reduces the average supply current (see
Typical Operating Characteristics). In between conver-
sions, the supply current is about 25μA due to the cur-
rent consumed by the conversion rate timer. In standby
mode, supply current drops to about 3μA. At very low
supply voltages (under the power-on-reset threshold),
the supply current is higher due to the address pin bias
currents. It can be as high as 100μA, depending on
ADD0 and ADD1 settings.
SMBus Digital Interface
From a software perspective, the MAX6654 appears as
a set of byte-wide registers that contain temperature
data, alarm threshold values, or control bits. A standard
SMBus 2-wire serial interface is used to read tempera-
ture data and write control bits and alarm threshold
data. The device responds to the same SMBus slave
address for access to all functions.
The MAX6654 employs four standard SMBus protocols:
Write Byte, Read Byte, Send Byte, and Receive Byte
(Figures 3, 4, 5). The shorter Receive Byte protocol
allows quicker transfers, provided that the correct data
register was previously selected by a Read Byte
instruction. Use caution with the shorter protocols in
multimaster systems, since a second master could
overwrite the command byte without informing the first
master.
9
相关PDF资料
MAX6655EVSYS EVAL KIT FOR MAX6655
MAX6660EVKIT EVAL KIT FOR MAX6660
MAX6662EVKIT+ EVALUATION KIT FOR MAX6662
MAX6683EVKIT EVAL KIT FOR MAX6683
MAX6969EVKIT+ KIT EVAL FOR MAX6969
MAX7500EVKIT+ KIT EVAL FOR MAX7500
MAX8630XEVKIT+ KIT EVAL FOR MAX8630X MAX8630W
MAX8678EVKIT+ KIT EVAL FOR MAX8678
相关代理商/技术参数
MAX6654EVSYS 功能描述:板上安装温度传感器 Evaluation System for the MAX6654 RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MAX6654MEE 功能描述:板上安装温度传感器 RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MAX6654MEE+ 功能描述:板上安装温度传感器 1C Accurate Temperature Sensor RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MAX6654MEE+T 功能描述:板上安装温度传感器 1C Accurate Temperature Sensor RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MAX6654MEET 制造商:MAXIM 功能描述:New
MAX6654MEE-T 功能描述:板上安装温度传感器 RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MAX6654YMEE+ 功能描述:板上安装温度传感器 1C Accurate Temperature Sensor RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor
MAX6654YMEE+T 功能描述:板上安装温度传感器 1C Accurate Temperature Sensor RoHS:否 制造商:Omron Electronics 输出类型:Digital 配置: 准确性:+/- 1.5 C, +/- 3 C 温度阈值: 数字输出 - 总线接口:2-Wire, I2C, SMBus 电源电压-最大:5.5 V 电源电压-最小:4.5 V 最大工作温度:+ 50 C 最小工作温度:0 C 关闭: 安装风格: 封装 / 箱体: 设备功能:Temperature and Humidity Sensor